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Random Walks on Weighted Graphs, andApplications to On-line Algorithms (ExtendedAbstract)Don CoppersmithPeter DoylePrabhakar RaghavanMarc SnirMarch 1990Version 1.0A1 dated 15 September 1994AbstractWe study the design and analysis of randomized on-line algorithms.We show that this problem is closely related to the synthesis of randomwalks on graphs with positive real costs on their edges.1 IntroductionLet G be a weighted undirected graph with n nodes f1; : : : ; ng; cij = cji > 0is the cost of the edge connecting nodes i and j, cii = 0. Consider a randomwalk on the graph G, executed according to a transition probability matrixP = (pij); pij is the probability that the walk moves from node i to node j,and the walk pays a cost cij in the process. Let eij (not in general = eji) bethe expected cost of a random walk starting at node i and ending at nodej (eii is the expected cost of a round trip from i). We say that the randomwalk has stretch c if there exists a constant a such that, for any sequencei0; i1; : : : ; i` of nodes Pj̀=1 eij�1ij � c �Pj̀=1 cij�1ij +a:We prove the followingtight result: 1
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Any random walk on a weighted graph with n nodes has stretch at leastn� 1, and any weighted graph with n nodes has a random walk with stretchn� 1.The upper bound proof is constructive, and shows how to compute thetransition probability matrix P from the cost matrix C = (cij). The proofuses new connections between random walks and e�ective resistances in net-works of resistors, together with results from electric network theory. Con-sider a network of resistors with n nodes, and conductance �ij between nodesi and j (nodes i and j are connected by a resistor with branch resistance1=�ij). Let Rij be the e�ective resistance between nodes i and j (i.e., 1=Rijis the current that would 
ow from i to j if one volt were applied betweeni and j; it is known that 1=Rij � �ij). Let the resistive random walk bede�ned by the probabilities pij = �ij=Pk �ik. In Section 3 we show that thisrandom walk has stretch n�1 in the graph with costs cij = Rij. Thus, a ran-dom walk with optimal stretch is obtained by computing the resistive inverse(�ij) of the cost matrix (cij): a network of branch conductances (�ij � 0),so that, for any i; j, cij is the e�ective (not branch) resistance between i andj. Unfortunately, not all cost matrices have resistive inverses (with positiveconductances). However, every matrix (cij) has a generalized resistive in-verse: a network of non-negative branch conductances �ij with associatede�ective resistances Rij, such that either Rij = cij, or Rij < cij and �ij = 0.In Section 4 we show that the resistive random walk has stretch n�1 for thegraph with costs Rij, and consequently for the graph with costs cij , since itnever traverses those edges whose costs it underestimates.Chandra et al. [6] use electric networks to analyze a particular randomwalk, in which pij = (1=cij)=(Pk 1=cik). Traditionally, this is how electricnetworks have been used in studying random walks: to analyze a given ran-dom walk (cf. Doyle and Snell [9]). Here we instead use electric networks tosynthesize a (di�erent, in general) random walk with optimal stretch.Next, we outline the relevance of this random walk synthesis problem tothe design of on-line algorithms. Consider the following game played betweena cat and a mouse on the graph G. Round r starts with both cat and mouseon the same node ir�1. The mouse moves to a new node ir not known to thecat; the cat then walks on the graph until it reaches the mouse at ij, at whichpoint round j+1 starts. A strategy for the cat is c-competitive if there exists aconstant a such that for any sequence i0; i1; : : : ik of nodes the cat's expectedcost is � c� (the mouse's cost) +a. The competitiveness coe�cient of the2
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cat-and-mouse game is the in�mum of c such that a c-competitive strategyexists. A random walk with stretch c de�nes a strategy for the cat that isc-competitive: in each round, the cat executes a random walk according to Puntil it �nds the mouse. This strategy is very simple, and memoryless: thecat need not remember its previous moves, and the next cat move dependsonly on its current position.We show that this cat-and-mouse game is at the core of many other on-line algorithms that have evoked tremendous interest of late [2, 3, 4, 7, 8, 10,14, 16, 17, 18]. We consider two settings. The �rst is the k-server problem,de�ned in [14]. An on-line algorithm manages k mobile servers located at thenodes of a graph G whose edges have positive real lengths; it has to satisfya sequence of requests for service at node vi, i = 1; 2; : : :, by moving a serverto vi unless it already has a server there. Each time it moves a server, it paysa cost equal to the distance moved by that server. We compare the cost ofsuch algorithm, to the cost of an adversary that, in addition to moving itsservers, also generates the sequence of requests. The competitiveness of anon-line algorithm is de�ned with respect to these costs (Section 5) [2, 17]. Itwas conjectured in [14] that for every cost matrix there exists a k-competitivealgorithm for this problem. Repeated attempts to prove this conjecture havesucceeded only in a few special cases [7, 8, 17]. We use our optimal randomwalk to derive a k-competitive server algorithm in two situations: (1) whenthe graph G has a resistive inverse, and (2) when the graph G has k + 1nodes. This includes all previously known cases where the conjecture wasproven true, as well as many new cases. We do so with a single uni�ed theory| that of resistive inverses. The algorithm is very simple, and memoryless.The other setting is the metrical task system (MTS), de�ned in [4]. AMTS consists of a weighted graph (the nodes of the graph are states, and edgeweights are the costs of moving between states). The algorithm occupies onestate at any time. A task is represented by a vector (c1; : : : ; cn), where ci is thecost of processing the task in state i. The algorithm is presented a sequenceof tasks T = T1; T2; : : : and can move before processing each task. The costincurred by the algorithm is the sum of the costs of moving and processingtasks. A (2n � 1)-competitive on-line algorithm for MTS is presented in[4], and shown to be optimal. The algorithm is deterministic, but somewhatcomplex. In Section 6 we present a simple, memoryless randomized algorithmfor MTS that is (2n � 1)-competitive.3
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2 Lower bound on StretchTheorem 2.1 For any n � n cost matrix C and any transition probabilitymatrix P , the stretch of the random walk de�ned by P on the graph withweights given by C is � n� 1.Proof: We can assume w.l.o.g. that P is irreducible (the underlyingdirected graph is strongly connected). Let �i be the ith component of theleft eigenvector of P for the eigenvalue 1 (when P is aperiodic, this is thestationary probability of node i), so that �j = Pi �ipij . Let ei = Pj pijcijdenote the expected cost of the �rst move out of node i, and let E = Pi �iei =Pij �ipijcij be the average cost per move. We haveXi;j (�ipij)eji = Xi �i0@Xj pijeji1A =Xi �i(eii � ei) = Xi �i(E=�i � ei) = (n� 1)Ewhile Pi;j(�ipij)cji = Pi;j(�ipij)cij = E. Thus, Pi;j(�ipij)eji = (n � 1)Pi;j(�ipij)cji.Notice that, if each directed edge (ji) (note the order!) is counted withmultiplicity proportional to �ipij; then a 
ow condition is satis�ed: the totalmultiplicity of edges leading out of i is equal to that of those leading into i.Thus, the above equation represents a convex combination of cycles so thatthere is some cycle (i1; i2; : : : i`; i`+1 = i1) with stretch at least n� 1; thus,X̀j=1 eijij+1 � (n � 1) X̀j=1 cijij+1 :2The symmetry of the cost matrix C is necessary for the theorem.3 Upper bound: resistive caseWe next consider the complementary upper bound problem: given C, tosynthesize a matrix P that achieves a stretch of n � 1 on C. In this section4
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we will describe a construction and proof for a class of matrices C known asresistive matrices.Let (�ij) be a non-negative symmetric real matrix with zero diagonal.Build the support graph (V;E); with vertex set V = f1; 2; :::; ng and edgeset E = f(i j) j �ij > 0g; and let (V;E) be connected. Consider a networkof resistors based on (V;E); such that the resistor between vertices i and jhas branch conductance �ij; or branch resistance 1=�ij:Let cij be the e�ective resistance between vertices i and j: (A unit voltagebetween i and j in this network of resistors results in a current of 1=cij :) Werequire that the support graph be connected so that the e�ective resistanceswill be �nite.De�nition 1 A cost matrix (cij) is resistive if it is the matrix of e�ectiveresistances obtained from a connected non-negative symmetric real matrix(�ij) of conductances. The matrix (�ij) is the resistive inverse of C: 2The following facts are not di�cult to prove, and follow from standardelectric network theory [19]. Resistive cost matrices are symmetric, �nite,positive o� the diagonal, zero on the diagonal, and satisfy the triangle in-equality: cij + cjk � cik: A principal submatrix of a resistive cost matrix isresistive.De�ne two (n� 1) � (n� 1) matrices ��; �C by��ii = Xj�n;j 6=i �ij; 1 � i � n� 1;��ij = ��ij; i 6= j; 1 � i; j � n� 1;�cij = [cin + cjn � cij ]=2; 1 � i; j � n� 1:Then �� is the inverse of �C : n�1Xj=1 ��ij�cjk = �ik:It can happen that a given cost matrix C = (cij) gives rise to a putativeresistive inverse with some negative conductances:9i; j : �ij < 0and in this case there is no resistive inverse for C:5
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Examples of resistive cost matrices include:(1) Any three points with the distances satisfying the triangle inequality.(2) Points on a line: vertex i is at a real number ri; with cij = j ri � rj j.(3) The uniform cost matrix cij = d, if i 6= j.(4) Tree closure: given a spanning tree on n vertices and positive costs forthe tree edges, the distance between any pair of points equals the distancebetween them on the tree.(5) A cost matrix C given by a graph with m + n vertices x1; x2; : : : ; xm;y1; y2; : : : ; yn; m; n > 1; where cxi;xj = 2m, cyi;yj = 2n, and cxi;yj = m+ n �1. The associated resistive inverse is a complete bipartite graph Km;n withresistors of resistance mn on each edge. This example cannot be expressedas a tree closure (Example (4) above): for if C were a tree closure, then themidpoint of the tree path joining x1 and x2 would be at distance n� 1 fromboth y1 and y2, contradicting cy1;y2 = 2n > 2(n� 1):If C is a resistive cost matrix, its resistive inverse (�ij) provides a way ofsynthesizing an optimal random walk P achieving a stretch of n� 1. In fact,in determining the stretch of a random walk, it su�ces to consider sequencesof nodes i1; i2; : : : i`; i`+1 that form a cycle in G.Theorem 3.1 Let C = (cij) be a resistive cost matrix and (�ij) its resistiveinverse. Let the transition probabilities be pij = �ij=(P 6̀=i �i`): Then everycycle (v1; v2; :::; v`; v`+1 = v1) has stretch n� 1 :X̀i=1 evivi+1 = (n� 1) � X̀i=1 cvivi+1 :Proof: Following Doyle and Snell [9] we de�ne the escape probabilityPesc(ij) to be the probability that a random walk, starting at vertex i; willreach vertex j before returning to vertex i: Doyle and Snell [9] show thatPesc(ij) = 1=cijPk �ik :On average, out of each Pgh �gh steps, the random walk visits vertex iwith frequency Pk �ik; and the number of traversals of the ordered edge (ij)is �ij: The average cost of Pgh �gh steps isXgh �ghcgh = 2(n � 1);6
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from Foster's Theorem [11, 12]. Of the Pk �ik round trips to vertex i; thenumber visiting vertex j isPesc(ij)Xk �ik = 1=cij :So the average cost of a round trip from vertex i to j and back to i isPgh �ghcgh1=cij = 2(n� 1) � cij = (n� 1) � [cij + cji]:This cost is also, by de�nition, eij + eji; so thateij + eji = (n � 1) � [cij + cji]:So the stretch of any two-cycle is n� 1:We need a bound on the stretch of any cycle, not just two-cycles. Thestationary probability of traversing the directed edge (ij) is �ij=Pgh �gh;which is symmetric because � is symmetric. Thus our random walk is areversible Markov chain [13]. For any cycle (v1; v2; :::; v`; v`+1 = v1); the ex-pected number of forward traversals of the cycle (not necessarily consecutive)is the same as the expected number of backward traversals of the cycle, andthe expected cost per forward traversal is the same as the expected cost perbackward traversal. ThusX̀i=1 evivi+1 = X̀i=1 evi+1vi= 12 "X̀i=1 evivi+1 + X̀i=1 evi+1vi#= 12 X̀i=1 hevivi+1 + evi+1vii= 12 X̀i=1(n� 1) hcvivi+1 + cvi+1vii= X̀i=1(n� 1)cvivi+1 :So every cycle has stretch n� 1: 27
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4 Upper bound: non-resistive caseIn this section we prove the existence of a generalized resistive inverse. Thegeneralized resistive inverse turns out to be the solution to a convex vari-ational problem, and we present a simple iterative algorithm for �nding it.From the generalized resistive inverse we get an n�1-competitive strategy forthe cat-and-mouse game with an arbitrary positive symmetric cost matrix.Theorem 4.1 Let C be any positive symmetric cost matrix. Then there isa unique resistive cost matrix Ĉ with associated conductance matrix �, suchthat ĉij � cij , �ij � 0 and ĉij = cij if �ij 6= 0.Thus � is the generalized resistive inverse of C.Proof: For simplicity, we will limit the discussion to the case of thetriangle graph, with assigned costs R0 = c1;2; S0 = c1;3; T0 = c2;3, and withedge conductances a = �1;2; b = �1;3; c = �2;3 and corresponding e�ectiveresistances R = R1;2; S = R1;3; T = R2;3. This case will exhibit all thefeatures of the general case, and yet allow us to get by without cumbersomesubscripts. Please note, however, that for a triangle graph a cost matrix isresistive if and only if it satis�es the triangle inequality, while for a generalgraph the triangle inequality is necessary but by no means su�cient. Needlessto say, we will make no use of this condition for resistivity in our analysis ofthe triangle graph.We begin by recalling the relevant electrical theory (cf. Weinberg [19] andBott and Du�n [5]). The admittance matrix of our network isK = 0B@ a+ b �a �b�a a+ c �c�b �c b+ c 1CA :If you hook the network up to the world outside so as to establish nodevoltages v1; v2; v3, the currents I1; I2; I3 
owing into the network at the threenodes are given by 0B@ I1I2I3 1CA = K 0B@ v1v2v3 1CA :8
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The power being dissipated by the network is(I1v1 + I2v2 + I3v3) = � v1 v2 v3 �K 0B@ v1v2v3 1CAwhich is � 0. The matrix K is non-negative de�nite, with 0-eigenvector(1; 1; 1). Label its eigenvalues0 = �0 � �1 � �2:On the orthogonal complement P = fv1 + v2 + v3 = 0g of (1; 1; 1), K haseigenvalues �1; �2, and the determinant of KjP | that is, the product of thenon-zero eigenvalues of K | is given by the next-to-lowest order coe�cient ofthe characteristic polynomial of K, which can be expressed using Kirchho�'stree formula: detKjP = �1�2= �0�1 + �0�2 + �1�2= ����� a+ b �a�a a+ c �����+ ����� a+ b �b�b b+ c �����+ ����� a+ c �c�c b+ c �����= (ab+ ac+ bc) + (ab+ ac+ bc)+(ab+ ac+ bc)= 3D:Here the discriminant D = ab + ac + bc is obtained by summing over thespanning trees of the network the product of the conductivities of the edgesmaking up the tree (cf. Bott and Du�n [5]). The e�ective resistances areobtained by taking the gradient of logD in edge-conductance space:(R;S; T ) = ( @@a logD; @@b logD; @@c logD)= r(a;b;c) logD:That was all ostensibly review. Now then, on the non-negative orthant�� = fa; b; c � 0g in edge-conductance space the functionlogD = log detKjP � log 39
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is concave; as Gil Strang has pointed out to us, this follows from the factthat on the set of positive de�nite matrices the function logD is concave (see[15]).Since logD is concave and the e�ective resistances are its partial deriva-tives, if conductances a0; b0; c0 induce �nite e�ective resistances R0; S0; T0then (a0; b0; c0) = arg max(a;b;c)2�� logD � (R0a+ S0b+ T0c):Thus if a resistive inverse exists, it is given as the solution to a convexprogramming problem. Now for any R0; S0; T0 > 0 this extremal problemstill has a unique solution, i.e., the equation above uniquely determines apoint (a0; b0; c0) 2 ��. The Kuhn-Tucker conditions identify this point as theunique point where R � R0 with R = R0 if a0 > 0, etc. Thus when (a0; b0; c0)lies in the interior of �� we have a genuine resistive inverse; when it lies onthe boundary we have a generalized inverse (or a true resistive inverse withsome zero conductances). So we're all set.This proof applies as well to the case where we demand that �ij = 0 forcertain selected edges (ij); and place no upper bounds on the correspondingĉij (i.e. set cij =1). 2If C = (cij) is resistive, the matrix inversion of Section 3 will �nd theassociated conductance matrix �; with ĉij = cij: If C is not resistive | oreven if it is | there is an iterative algorithm that converges to the generalizedresistive inverse whose existence is guaranteed by Theorem 4.1. In presentingthis algorithm we will once again limit the discussion to the case where thegraph is a triangle, and use the same notation as above.By Foster's theorem aR + bS + cT = 2, (the 2 here being one less thanthe number of nodes in the graph), and hence a0R0+ b0S0 + c0T0 = 2. Thus(a0; b0; c0) = arg max(a;b;c)2��D;where �� is the closure of the open simplex� = fa; b; c > 0; aR0 + bS0 + cT0 = 2g:To locate the maximum we can use the knee-jerk algorithm, according towhich we iterate the mappingT (a; b; c) = �a RR0 ; b SS0 ; c TT0� :10
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This algorithm is a particular instance of a general method known as theBaum algorithm. The mapping T takes � to itself, and strictly increases theobjective function D for any (a; b; c) (other than (a0; b0; c0)) in �. (See Baumand Eagon [1].) It follows from this that for any starting guess (a; b; c) 2 � thesequence T n(a; b; c) of iterates converges to the generalized resistive inverse(a0; b0; c0).Now let's return to the cat-and-mouse game.Corollary 4.2 Let G be any weighted graph with n nodes. The cat has an(n� 1)-competitive strategy for the cat-and-mouse game on G.5 The k-Server ProblemWe consider here the k-server problem of Manasse et al. [14] de�ned in Sec-tion 1. We compare the performance of an on-line k-server algorithm tothe performance of an adversary with k servers. The adversary chooses thenext request at each step, knowing the current state of the on-line algo-rithm, and moves one of its servers to satisfy the request (if necessary).The on-line algorithm then moves one of its servers if necessary, withoutknowing the state of the adversary. The algorithm is c-competitive if thereexists a constant a such that, for any adversary and any request sequence,E[cost on-line algorithm] � c � [cost adversary] + a. Such an adversary istermed adaptive on-line [2, 17]. One can weaken the adversary by requiringit to choose the sequence of requests in advance, so that it does not knowof the actual random choices made by the on-line algorithm in servicingthe request sequence; this is an oblivious adversary. Alternatively, one canstrengthen the adversary by allowing it to postpone its decision on its servermoves until the entire sequence of requests has been generated; this is anadaptive o�-line adversary. These three types of adversaries for randomizedalgorithms are provably di�erent [2, 10, 17]. However, they all coincide whenthe on-line algorithm is deterministic. Furthermore, if there is a randomizedalgorithm that is c-competitive against adaptive on-line adversaries, thenthere is a c2-competitive deterministic algorithm [2].Theorem 5.1 Let C be a resistive cost matrix. Then we have a randomizedk-competitive strategy for the k-server problem against an adaptive on-line11
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adversary. More generally, if every (k + 1)-node subgraph of C is resistive,we have a k-competitive strategy for the k-server problem on C.Proof: We exhibit a k-competitive on-line algorithm for the more gen-eral case; we call this algorithm RWALK. If a request arrives at one ofthe k vertices that RWALK's servers cover (let us denote these vertices bya1; a2; :::; ak), it does nothing. Suppose a request arrives at a vertex ak+1it fails to cover. Consider the (k + 1)-vertex subgraph C 0 determined bya1; a2; :::; ak; ak+1: By hypothesis, C 0 is resistive. Let �0 denote its resistiveinverse. With probability p0i = �0i;k+1Pkj=1 �0j;k+1it selects the server at vertex ai to move to the request at vertex ak+1: SinceC 0 is �nite, �0 is connected, and the denominator Pkj=1 �0j;k+1 is nonzero, theprobabilities are well de�ned and sum to 1.We need to prove that the RWALK is k-competitive. To this end, wede�ne a potential �: (This is not to be confused with an electrical potential.)Say the RWALK's servers are presently at vertices a = fa1; a2; :::; akg; andthe adversary's servers are presently at vertices b = fb1; b2; :::; bkg; where aand b may overlap. We de�ne �(a;b) as the sum of the costs of all the edgesbetween vertices currently occupied by RWALK's servers, plus k times thecost of a minimum-weight matching between vertices occupied by RWALK'sservers and the adversary's servers. That is,�(a;b) = X1�i<j�k cai;aj +min� k � kXi=1 cai;b�(i);where � ranges over the permutations on f1; 2; :::; kg:We also de�ne a quan-tity � depending on the present position and the past history:�(a;b; History) = �(a;b)+(RWALK's Cost) � k � (Adversary's Cost);where both \Cost"s are cumulative. We will show that the expected valueof � is a non-increasing function of time, and then show how this will implythe theorem. 12
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Let us consider the changes in � due to (i) a move by the adversary(which could increase �), and (ii) a move by RWALK, which (hopefully)tends to decrease �. By showing that in both cases, the expected changein � is � 0, we will argue that over any sequence of requests the expectedcost of RWALK is at most k times the adversary's cost plus an additive termindependent of the number of requests.If the adversary moves one of its servers from bj to b0j; its cumulative costis increased by cbj ;b0j : The potential � can increase by at most k times thatquantity, since the minimum-weight matching can increase in weight by atmost cbj;b0j : (Obtain a new matching �0 from the old one by matching a��1(j)to b0j instead of bj; and note that the weight of this new matching is no morethan cbj ;b0j plus the weight of the old one; the new minimum-weight matchingwill be no heavier than this constructed matching.) So in this case � doesnot increase.Next, we consider a move made by RWALK, and compare its cost to theexpected change in �. First, we suppose that a and b overlap in k�1 places(later we remove this assumption):ai = bi; i = 2; 3; :::; k; a1 6= b1:De�ne bk+1 = a1: For convenience, set m = k + 1; and let cij; �ij, for i; j= 1; 2; :::;m be de�ned by cij = cbi ;bj : Recall the equations relating � and C;specialized to the entries of interest:��11 = k+1Xj=2 �1j��1j = ��1j; 2 � j � k�cji = [cjm + cim � cji]=2kXj=1 ��1j�cji = �1i; i � kMultiply this last equation by 2 and sum over i = 2; 3; :::; k; noticing that inthis range �1i = 0: We obtain:0 = 2 kXi=2 kXj=1 ��1j�cji13
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= 2 kXi=20@��11�c1i + kXj=2 ��1j�cji1A= kXi=28<:k+1Xj=2 �1j [c1m + cim � ci1]� kXj=2 �1j [cjm + cim � cji]9=;For j = m = k + 1 the latter bracketed expression [cjm + cim � cji] iszero, so we can include it in the sum, extending the limits of summation tok + 1 : 0 = kXi=28<:k+1Xj=2 �1j[c1m + cim � ci1]� k+1Xj=2 �1j[cjm + cim � cji]9=;= k+1Xj=2 �1j "(k � 1)c1m + kXi=2 cim � kXi=2 ci1�(k � 1)cjm � kXi=2 cim + kXi=2 cji#= k+1Xj=2 �1j "kc1m � mXi=2 ci1 � kcjm + mXi=2 cji#= k+1Xj=2 �1j "kc1m � mXi=2 ci1 � kcjm+ X1�i�m; i6=j cji � cj135De�ning �` = kc`m + X1�i<j�m; i;j 6=` cij= kc`m + X1�i<j�m cij � mXi=1 ci`14
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we discover k+1Xj=2 �1j[�1 � �j � cj1] = 0:Now it is straightforward to verify that the expected change in �; as RWALKmakes its random move with probability (�1j)=(Pk+1i=2 �1i); is1Pmi=2 �1i � k+1Xj=2 �1j[�1 � �j � cj1] = 0:Thus the expected change in � is zero on RWALK's move.Finally we verify the case in which a and b overlap in fewer than k �1 vertices, and RWALK makes a move. Suppose the request is at vertexb1. Suppose the current minimum-weight matching pairs ai with bi; i =1; 2; :::; k: Perform the previous analysis as if the adversary's other serversb2; :::; bk were presently at the same vertices as our a2; :::; ak: Obtain again1Pmi=2 �1i � mXj=2�1j[�1 � �j � cj1] = 0:The true potential � di�ers from that of the previous case only in the weightof the minimum-weight matching. Consider a new matching, not necessarilyof minimum weight, after our current move from aj to b1; obtained from theold matching by matching a1 to bj; aj to b1; and ai to bi for i 6= 1; j: Thisnew matching di�ers from the old one byca1;bj � ca1;b1 � caj;bj � ca1;aj � ca1;b1by the triangle inequality. But the previous analysis guaranteed that theexpected change in � was zero, and for that calculation we used a value ofca1;aj � ca1;b1as the change in �: The true change in � is less than that, and even lesswhen we allow the new matching to be of minimumweight, so that again theexpected change in � is non-positive.So the expected value of �(a;b;History) = �(a;b)+(RWALK's Cost)�k � (Adversary's Cost) is nonincreasing at every step. Since � is positive, we�nd that (RWALK's Cost)� k � (Adversary's Cost)15
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remains bounded, in expectation, by the initial value of �: So the competi-tiveness is k: 2The last result is valid even if the graph is in�nite; one only requiresthat the cost of a simple path be bounded and every k + 1-node subgraphbe resistive. The potential � we developed to prove the last result seems tobe very natural and useful for the server problem. It has been subsequentlyused by several authors [7, 8].As corollaries of Theorem 5.1, we have k-competitive algorithms for theserver problem for k = 2 in any metric space [14], for points on a line [7], forthe weighted cache problem [7, 17], for the uniform cost (caching) case [18]and for points on a tree [8]. These algorithms are extremely simple, andmemoryless. Berman et al. [3] give an algorithm for 3 servers that achievesa �nite competitiveness in any metric space. With the sole exception ofthis result, every special case of the server problem for which any �nitecompetitiveness is known is in a resistive metric space. Certainly, all knowncases where we know of k-competitive on-line algorithms are in (special casesof) resistive metric spaces. Thus our theory based on resistive random walksboth uni�es and generalizes our current picture of the k-server conjecture,and implies k2-competitive deterministic algorithms in resistive spaces [2].Theorem 5.1 can be used to derive competitive k-server algorithms fornon-resistive spaces as well, when these can be approximated by resistivespaces. A cost matrix C 0 is a �-approximation for the matrix C if, for all ij,c0ij � cij � �c0ij . If a server algorithm is c-competitive for the matrix C 0, thenit is �c-competitive for the matrix C. Using this observation, we can derivea 2k-competitive algorithm for k servers when the nodes are on a circle,with distances being measured along the circumference. Consider points ona circle, with the cost cij between two points i; j given as the distance alongthe smaller arc joining them. We can construct a 2-approximation C 0 to thiscost C: Each arc of the circle becomes a resistor with resistance equal to thearc-length. If the smaller and larger arc distances joining two points are �; �respectively, then the e�ective resistance c0 is ��=(� + �) while c = � < �:Then easily c0 � c � 2c0: In conjunction with results in [2], this implies thatthere is a 4k2-competitive deterministic algorithm for k servers on the circle.No �nitely competitive deterministic algorithm was known before for thisproblem.On the other hand, it is not possible to �nitely approximate arbitrarydistance matrices derived from the Euclidean plane (proof omitted in this16



www.manaraa.com

version). Thus, this approximation technique does not solve the server prob-lem in the plane.We now turn to the case k = n� 1.Theorem 5.2 Let C be any cost matrix. If there are n nodes and k = n� 1servers, we have an (n� 1)-competitive strategy.The signi�cance of Theorem 5.2 is that it holds even when the cij do notsatisfy the triangle inequality, a case for which no prior result exists [14].Proof outline: We can assume that servers always occupy distinctnodes. Both the on-line algorithm and the adversary have one unoccupiednode which we consider, respectively, to be \cat" and \mouse". Whenevera server moves from i to j the cat (resp. the mouse) moves from j to i, atcost cij = cji. We can assume that the adversary always requests the uniquenode (cat's position) which is not occupied by the on-line algorithm. It hasto move one of its own servers to satisfy this request only when the positionsof the cat and of the mouse coincide. This situation corresponds exactly tothe cat-and-mouse game, and the result follows from Corollary 4.2. 26 Metrical Task SystemsWe now consider Metrical Task Systems, as de�ned by Borodin et al. [4].De�nitions are omitted here for brevity; the reader is referred to [4].We compare the performance of an on-line algorithm to the performanceof an adversary. At each step, the adversary chooses the next task, knowingthe current state of the on-line algorithm, and chooses its next position. Anon-line algorithm is c-competitive if there is a constant a such that for anyn and any adversary E[cost of on-line algorithm] � c � [cost of adversary] + a(where cost includes the task processing cost and the cost of moves).Borodin et al. [4] de�ne an on-line algorithm for metrical task systems tobe a traversal algorithm if:(1) the states are visited in a �xed sequence s1; s2; � � � independent of theinput task sequence; and,(2) there is a sequence of positive threshold costs c1; c2; � � � such that thetransition from sj to sj+1 occurs when the total task processing cost incurredsince entering sj reaches cj. In fact, they set cj = csj ;sj+1 .17
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We extend this de�nition to randomized traversal algorithms. Condition(1) is replaced by (10): the states are visited by a Markov process that isindependent of the input task sequence.Borodin et al. [4] give a 8(n � 1)-competitive deterministic traversal al-gorithm, and a more complex (2n � 1)-competitive deterministic algorithm,which is optimal. We give here a (2n � 1)-competitive randomized traversalalgorithm. The algorithm is very simple, and memoryless. It is based on therandom walks developed in Sections 3 and 4.Let (cij) be the cost matrix for a metrical task system on a graph withn nodes. Let (�ij) be the generalized resistive inverse of (cij), and let pijbe the transition probabilities for the resistive random walk. The on-linealgorithm makes a transition out of current state i when the expected totaltask processing cost since entering state i exceeds a threshold �i (to thisend, Borodin et al. describe a continuous-time view of the process in whicha state-transition can be made at any point in time rather than at discretesteps; details on how this is done omitted in this version); it then randomlychooses the next state, where state j is chosen with probability pij .Theorem 6.1 The on-line algorithm is (2n�1)-competitive against an adap-tive on-line adversary, for the choice of thresholds �i = 2Pj pijcij=(Pj �ijcij).Proof outline: One can show that this algorithm corresponds to acat-and-mouse game, with the following two modi�cations: (1) the cat pays�i whenever it reaches node i; (2) if the mouse is caught at node i by thecat, then the mouse can either move to a new node j and pay cij, or itcan stay put at node i until the cat catches it again, and pay �i. Usingsome additional properties we prove about resistive walks, we show thatthe expected total task-processing cost of the cat in the extended game isn=(n� 1) times the expected total cost of edges traversed by cat. Each non-trivial loop in the random walk of the cat has a stretch � n � 1. We alsoshow that eii � (n � 1) � �i. It follows that the expected move cost of thecat is at most n� 1 times the mouse cost, and the expected total cat cost is� (n� 1) � (1 + n=(n � 1)) = 2n� 1 times the mouse cost. 27 Open ProblemsIn this section we list several open problems raised by our work.18
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We do not know what stretch can be achieved by random walks when thecost matrix C is not symmetric.It would be interesting to study the cat-and-mouse game under a widerclass of strategies. For instance, on the circumference of a circle, it is easyto give a deterministic algorithm for the cat that achieves a constant com-petitiveness. Moreover, one can consider randomized algorithms other thanthose based on random walks. In fact, a simple (though not memoryless)randomized algorithm achieves a competitiveness of n=2 when the graph isthe complete graph on n nodes with the same cost on every edge.We have no results for the k server problem in general metric spaces.We would like to prove that the resistive random walk yields a server algo-rithm that achieves a competitiveness that is a function of k alone, in anymetric space (against an adaptive on-line adversary). This would yield [2]a deterministic algorithm having �nite competitiveness in an arbitrary met-ric space. We can prove that the resistive server algorithm is (2k � 1)-competitive against a lazy adaptive on-line adversary that moves only whenit must: whenever there is a node occupied by an adversary server that isnot occupied by an on-line algorithm's server, the adversary requests suchnode. The lazy adversary conjecture is that the resistive on-line algorithmachieves its worst performance against a lazy adversary. A proof of this con-jecture would show that the resistive algorithm is (2k � 1)-competitive inevery metric space.
19
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